PRELIMINARY NOTE

Synthesis and Structure of Dirubidium Oxotetrafluorotellurate (IV) $\frac{\text{Rb}_{2}\text{TeOF}_{4}}{\text{Rb}_{2}\text{TeOF}_{4}}$

JEAN-PIERRE BASTIDE, PATRICK GERMAIN and GUY PERACHON

I.N.S.A., U.A. 116, Thermochimie Minérale, bât. 401, 69621 Villeurbanne Cedex, (France)

SUMMARY

Dirubidium oxotetrafluorotellurate (IV) Rb_2TeOF_4 is described for the first time. This compound is isostructural with the two known oxotetrafluorotellurates M_2TeOF_4 (M = K, Cs). It crystallizes in the orthorhombic system with lattice constants a = 6,45 Å ; b = 14,18 Å ; c = 6,715 Å.

In a recent study [1] it has been clearly proved that vitrification of alkaline pentafluorotellurates (IV) $MTeF_5$ ($M \approx K$, Rb, Cs) is strictly governed by their partial reaction with oxygen.

The glassy material thus obtained contains an oxyfluoride M_2 TeOF₄. The relative amount MTeF₅/ M_2 TeOF₄ depends on the conditions of the heat treatment and on the oxygen content of the gas surrounding the sample. To our knowledge the corresponding compound for M = Rb has not been described so far.

0022-1139/89/\$3.50

© Elsevier Sequoia/Printed in The Netherlands

Synthesis of Rb_2TeOF_4 has been performed to allow a conclusive identification of the phases which appear upon crystallization of the glass.

The reaction described by Milne and Moffett [2] for K and Cs compounds was used :

 $RbTeF_5 + 3 RbF + TeO_2 \longrightarrow 2 Rb_2 TeOF_4$

RbF and TeO₂ are commercial reagents (Merck pur \ge 99,8 %). RbTeF₅ is obtained as described elsewhere [3],[4].

Manipulations, heat treatments and sampling were carried out in a glove-box under an atmosphere of dry and oxygen-free argon.

A mixture of powdered $RbTeF_5$, RbF and TeO_2 with the above stoichiometric proportions was heated at 500°C for 1 hour. After cooling and grinding another treatment at 500°C was performed for 3 hours. Under these conditions Rb_2TeOF_4 was obtained quantitatively as a white solid.

The crystallographic study was performed with a Philips assembly (horizontal goniometer and 360 mm camera, copper source 1,5418 Å). X-ray powder data are given in Table I.

I/Io	dobs.	dcalc.	hkl	I/Io	dobs.	dcalc.	hkl
10	4.86	4.875	021	10	2,227	2.229	061
5	4.41	4.420	111	20	1.947	1.945	242
10	3.78	3.810	1 3 0	10	1.906	1.906	260
5	3.53	3.545	040	20	1.880	1.879	331
20	3.37	3.360	002	5	1.836	1.834	261
100	3.31	3.315	131	5	1.792	1.796	312
25	3.21	3.225	200	5	1.714	1.714	081
5	2.528	2.520	132	5	1.695	1.695	153
15	2.362	2.363	060	10	1.664	1.660	351
30	2.335	2.326	202	5	1.6130	1.6125	400

X-ray powder diffraction data for Rb₂TeOF₄

The intensities were estimated visually. The observed reflexions were indexed using an a priori procedure. The cell dimensions were determined by a least-square analysis. Rb_2TeOF_4 is orthorhombic with a = 6.45 Å, b = 14.18 Å, c = 6.715 Å, Dx = 4.22 g/cm³, Z = 4.

TABLE I

This compound is isostructural with the two known $M_2 \text{TeOF}_4$ (M = K, Cs) [2] having the $M_2 \text{SbF}_5$ structure (M = K, Rb, Cs, T1 [5] or NH₄ [5],[6]). Cell dimensions are given for comparison in Table II.

TABLE II

Orthorhombic cell dimensions (A) for M_2 TeOF, and M_2 SbF₅ compounds

		M2 ^{TeOF} 4			M ₂ SbF ₅				
Ň	A	σ	Ь	c	М	a	b	с	
к	(a)	6.24	13.83	6.46	K (c) Rb (c)	6.244 6.399	13.67 13.88	6.491 6.745	
RЬ	(Ь)	6.45	14.18	6.715	T1(c) NH_ (c)	6.47 6.489	14.05	6.710	
Cs	(a)	6.65	14.53	7.04	NH ⁴ (d) Cs ⁴ (c)	6.497 6.652	14.162 14.45	6.772 7.099	
(a)	: ref.	2 - (b) : this	work ; (c) : ref. 5	; (d) :	ref. ó		

Moreover the indexing of the observed X-ray reflexions for Rb_2TeOF_4 (Table I) is compatible with the same space group Cmcm (63) as for M_2SbF_5 compounds [5],[6].

The structure of these compounds contains isolated ${\rm SbF}_5{\rm E}$ or ${\rm TeOF}_4{\rm E}$ anions whose geometry can be described by a slightly distorted octahedra in which the lone pair of electrons E located on an apical position plays a stereochemically active role.

- 1 P. Germain, P. Claudy, J.M. Létoffé and J.P. Bastide, Mat. Res. Bull., submitted for publication.
- 2 J.B. Milne and D. Moffett, Inorg. Chem., 12, 10 (1973) 2240.
- 3 J.C. Jumas, F. Vermot-Gaud-Daniel and E. Philippot, C.R. Acad. Sc. Paris, 282 (1976) 843.

4 P. Germain, Thesis, I.D.E. 86.01, I.N.S.A., Lyon, France, 1986.

- 5 A. Byström and K. Wilhelmi, Ark. Kemi, 3 (1951) 461.
- 6 R.R. Ryan and D.T. Cromer, Inorg. Chem., 11, 10 (1972) 2322.